FLORIDA UNIV GAINESVILLE DEPT OF INDUSTRIAL AND SYS==ETC F/6 12/1
AN EFFICIENT COMPUTATIONAL ALTERNATIVE TO 'USING LINEAR PROGRAM==ETC (U)
OCT 77 L E DANIELs S HART» T J HODGSON NO0O14=76=C~0096 '

NL

UNCLASSIFIED RR=77=9




v




AN EFFICIENT COMPUTATIONAL ALTERNATIVE TO
'USING LINEAR PROGRAMMING TO DESIGN
O0IL POLLUTION DETECTION SCHEDULES'

Research Report No. 77-9

by
Lee E. Daniel, Jr.*

Sandal Hart*#*
Thom J. Hodgson+

October, 1977

+Department of Industrial & Systems Engineering
University of Florida
Gainesville, Florida 32611

i

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This research was supported in part by the Office of Naval
Research, under contract number N00014-76-C-0096.
*Vector Research, Inc., Ann Arbor, Michigan 48106.

**Management Systems Division, Proctor and Gamble, Inc.
Cincinnati, Ohio 45222




e A A P T,

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 3
:
/ REPORT DOCUMENTATION PAGE prrREAD INSTRUCTIONS
- MBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER ‘
R R ==77-9 ¥ l g
o TITCETuka Subtite) s 3 .
- -7
| An Efficient Computational Alternative to 'Using / /;oaJM p‘[/ /.
Linear Programming to Design 0il Pollution . L
Detection Schedules', E;?E;'mm"""" G Wt

-

Sandal

art

[P AuTHoR(e) . CONTRACT OR GRANT NUMBER(e)
@ Lee E.kaniel, Jr) @ b

NP0014-76-C-8F96/ v~

AND ADDRESS : JECT, TASK
kg AREA & WORK UNIT NUMBERS '

Industrial & Systems Engineering .~
University of Florida . !

FL.__32611
11. CONTROLLING OFFICE NAME AND ADDRESS < /

—

17

Office of Naval Research
Arlington, VA 15
T3, MONITORING AGENCY NAME & ADDRESS(I! different from Controlling Otfice) | V5. SECURITY CLASS. (of this report)

Unclassified
T8a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

[16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Bloo. “lerent from Report)

N/A

18. SUPPLEMENTARY NOTES

har) i

19. KEY WORDS (Continue on reverse side If y and identify by block ) |
Markov Decision Processes Search
Semi-Markov Processes Dynamic Programming

Pollution Detection

ry

20\ ABSTRACT (Continue on reverse side Il 'y and identify by block )

In Olson, Wright, and McKell's recent paper on the design of o0il pollution
detection schedules, an interesting and inventive development and application
of a Markov Decision Process was presented. Optimal schedules for patrol
flights of surveillance aircraft were found using linear programming. In this
paper the model has been reformulated as a discrete time semi-Markov process.
' Significant computational advantages accrue from this alternative approach. {

KT §1

FORM .
DD | jan 73 1473 £OITION OF 1 NOV 68 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data @ i




R T M AR, A e G R

Abstract

An Efficient Computational Alternative To
'Using Linear Programming to Design
0il Pollution Detection Schedules'
by
Lee E. Daniel, Jr.
Sandal S. Hart
Thom J. Hodgson
In Olson, Wright, and McKell's recent paper on the design of oil pollution
detection schedules, an interesting and inventive development and application
of a Markov Decision Process was presented. Optimal schedules for patrol
flights of surveillance aircraft were found using linear programming. In this

paper the model has been reformulated as a discrete time semi-Markov process.

Significant computational advantages accrue from this alternative approach.
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Olson, Wright, and McKell [6], recently reported on a very interesting

application of the linear programming formulation for Markov decision processes.
The U. S. Coast Guard is charged with the résponsibility for environmental
protection in our coastal areas. Specifically, they are chartered to operate
electronic sensor equipped patrol aircraft whose mission, in this case, is the
detection and prevention of o0il and hazardous material pollution in coastal and
offshore areas. A search model was developed for scheduling patrol flights.

This model is part of a system called Pollution Detection and Prevention System

(PDAPS). The objective of the model is to find a flight plan or schedule which
maximizes the expected number of pollution detections per patrol flight. Each
flight may cover a given number of known geographical sectors where pollution
is likely to occur. The probability of a pollution incident occurring in a
geographical area is obtained from historical pollution statistics, shipping
statistics, and pollution prediction models which are contained in PDAPS. It may
not be possible to search all sectors of interest in one flight. Of those sectors
which are searched, there may be multiple possible flight patterns depending on
physical properties of the sector and flight altitude. For example, three flight
patterns are shown for a sector in figure 1. The detection probability for a
sector varies according to the pattern flown.

In addition to maximizing the expected number of pollution incidents detected,
the pollution flight schedules include a randomness factor in order to have a
preventive effect on intentional polluters. By this we mean that schedule
generation is performed in two stages. First, an optimal "expected value'schedule is
generated. Second, each time an actual flight is made, a schedule is generated
randomly from the "expected value' schedule. The amount of "randomness' in the

actual schedule is related to a randomness factor e, to be defined shortly.




Pattern 1

Pattern 2

.

Pattern 3

Figure 2

Three Different Flight Patterns
for a Geographical Pollution Sector
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States of the system, for modelling purposes, are described by a 3-tuple
in which the first entry designates the geographical sector, the second indicates
the sector exit point (i.e. the flight pattern used to search the sector); and
the third gives the remaining flight time. It is clear that the state defini-
tion has the Markov property, in that for any given system state (i.e., the
location of the aircraft and the remaining flight time) the definition includes ;
the information necessary to plan the rest of a flight. The reader may note that
the definition, however, does allow revisiting of geographic sectors (i.e.,
subtours). This shortcoming is easily eliminated in practice. The reader is
referred to [5, 6] for more detail. Included in the set of states are states
representing both the beginning and the end of the flight (normally the same
location, but not necessarily).

We now move to a linear programming formulation of the patrol flight
scheduling problem. The objective of the linear program is, for a given ran-
domness factor e, to maximize the expected number of pollution detections.

Note that in the following discussion the 3~tuple system state variable is
represented by a single dimensioned variable. Define Si as the set of possible

successor states associated with state i. If S denotes the set of all states then

S = S1 U 82 G sse SN where N is the number of states. Let M denote the

total flight time available for a patrol mission. Tt is the total flight

ij
time associated with transition from state i to state j. Pdij is the
probability of detecting a pollution incident associated with the transition
from state i to state j. The introduction of randomness into the flight
schedules is accomplished in the following manner. Let qij(a) be the

rrobability of going to state j given that the current state is i and it is

desired to transition to state a. This is related to the randomness factor ¢ as

follows: .




0<ecx<1, N(Si) = cardinality of §;

0 v 3£ 8,
qij(‘)' l1-c¢ » J=a

€
ﬁzgzy—:—I » 3 € Si’ 3j #;a.

Note that
a
g z qij(a)Pdij
jeSi

represents the expected number of detections from state i given that the decision
is to go to a. Let Zia be the probability of being in state i and choosing to go

to state a.
The final linear programming model (equivalent to model II in [6]) is:

Find {zia} 1eS, aes; in order to

max Z z ci zia’
ieS aeS
i
Subject to
R T P
ieS aeSi =
z, (6,, - q,,(a)) = 0, all jeS,
ieS aeS aa’ 1) 13
i
where
[9 RN R
6ij = .
1’1=j

It should be noted that the linear programming formulation of Olson, et al. [6],

is equivalent to that of Derman [1], Wolfe and Dantzig [8], and Manne [4] for
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Markov decision processes. The structure of the linear program insures that one

and only one policy is chosen for each state of the system. The execution time
for solving this system as a linear program is quite large, particularly for

problems of practical size (see Table 1).

In reviewing the process, it can be observedrthat, disregarding the
remaining flight time, the process of going from sector to sector is Markovian.
Therefore, the process can be viewed as a discrete time semi-Markov process
where the state of the system is described by a 2-tuple in which the first
entry is the geographic sector and the second indicates the sector exit point
(flight pattern). The time between transitions is the transit time between
sect exit points. The semi-Markov structure results in a considerable

n in the number of states of the system. Since the problem has a finite
ing horizon (length of the flight), dynamic programming appears to be the
appropriate solution technique. From Howard {3}, the general form of the finite

horizon, discrete time semi-Markov dynamic recursion is (ignoring boundary conditions):

a

N n
vi(n) = m:x {ci + jZlqij(a) ) vj(n - m) hij

m=1

(m)}, (1)

where

vi(n) is the maximum expected number of pollution detections over the
remaining n time units given the process starts in state i.

hi.(m) is the probability that m time units will be required to go
J from state i to state j when it is desired to transition to state a.

Note that the state designations i and j now refer to the redefined
2-dimensional states of the semi-Markov model. For this particular problem,
the inner sum over the transition time probabilities in (1) has only one term since

the transition (flight) time between states is assumed to be deterministic. Hence,

there is a matrix of transition times from state i to state j (t,.), rather

1j

than one of functions of transition times from state i to state j (h

ij(m))-

Equation (1) simplifies to the following form:
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Table 1. Computation Times for Linear Program**#*

Length of
flight Number of
(minutes) Markov States
*% 66
120 341
420 1565

[* CPU Seconds on CDC 6000 Series Computer [5]]
[** Not able to determine]
[*** Linear Programs run using the CDC OPTIMA System]

l’ o
F

Computation Time%*
(Seconds)

212
552.

7815.




N
v (n) = m:x {ci + jzlqii(a)"j(“ - 101, (2)

where Iij is the transition time from state i to state j. The procedure is
initiated by setting

vi(O) = - i # the final (or home) state,
vi(O) =0, i = the final (or home) state, and
vi(n) = -0, for negative values of n

The procedure is terminated when vI(M) is calculated, where I is the initial
(or beginning) state and M is the length of the flight.

It should be noted that the semi-Markov formulation is equivalent to that
of Olson, et al., and the state reduction techniques discussed in [5, 6] apply
to this formulation. Computational advan%ages accrue from the significant
reduction in the number of states in the system and the finite horizon dynamic
programming approach (as opposed to the infinite horizon LP approach).

Equivalence of size, for comparison of computational efficiency of the
semi-Markov and Markov formulations, is easily established.

Certain entries of the vi(n) matrix can be determined to be infeasible (i.e., it
is either impossible to reach state i from the start point in n time units, or
it is impossible to reach the finish point from state i in the flight time re-
maining). In addition, it is possible to limit, artificially, the time window
within which each sector can be visited. For instance, due to operational con-
siderations associated with a given data set to be used as input for the dynamic
program, it may be apparent that a certain geographic sector can only be visited
early in the flight, if at all. It would make sense, then, to declare those
entries of vi(n) associated with the geographic sector to be infeasible for time
periods (n) greater than the latest reasonable visitation time. The remaining
(feasible) elements of vi(n) each represent states of the system for the Markov
formulation. Therefore, counting the feasible entries of the vi(n) matrix gives

the equivalent number of states of the Markov problem for a given semi-Markov

problem.

o TGS e EAIRR




AN AR 07+ AP VAT T i

The data used by Olson et al., was not available. Therefore, a problem

was formulated using realistic data from [7]. The sectors considered were po-
tential oil well drilling sites and shipping lanes in the Gulf of Mexico off the
Florida coast. The aircraft was assumed to fly at a speed of 130 knots. Flight
patterns were designed for each sector and the detection probabilities were

randomly generated. There were 35 sectors which, when combined with the various

flight patterns, resulted in 111 semi-Markov states. Time was discretized,

as ;n [5, 6], in minutes. The equivalent number of Markov states de-
pended on the length of the flight and the extent to which various state re-
duction techniques [5, 6] were applied. The computationa. results for the
various runs made are displayed in Table 2., In addition, the computational
results are included in Figure 2 for comparison with the linear programming
results. (Note that figure 2 is a semi-log graph).

The relative difference in computation times is quite large. It might
be argued that some of the difference can be attributed to the relative
speeds of the CDC 6000 series computer used for the Linear Program and the
IBM~370 model 165 computer used for the Dynamic Program, but the computational
differences (more than 4 orders of magnitude) are large enough to absorb
easily any differences in machine speed. For the problem at hand, the power
of the discrete time semi-Markov process as a modelling tool is that it brings
forth the underlying structure in a more straightforward fashion. This allows a
simplified computational approach to the optimization and results in the
computational efficiencies observed.

The computer storage requirements for the experimental dynamic program code
are reasonably modest, all things considered. The 6 hr. (360 minute) flight
problem (the largest we ran) requires less than 260K bytes of core. No additional

off-line storage is necessary. Rather large efficiencies (~50%) could be




affected through list processing to eliminate storage requirements for

infeasible entries of vi(n), but that was not implemented in the code. ! |




Table 2. Computation Times for Dynamic Program**

Length of

Number of Semi- flight Equivalent Number Computation Time*
Markov States (minutes) of Markov States (Seconds)

111 180 1076 .396

111 180 2914 1.151

111 360 4120 1.694

111 360 7303 2.626

111 360 14592 7.3125

[*CPU Seconds on IBM 370-165 computer]
[*#* Dynamic Program coded in FORTRAN IV]
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